Institut de recherche mathématique avancée

L'institut

Photo de la tour IRMA

L'IRMA

Riche d’une histoire de plus de 100 ans, l'IRMA est aujourd'hui une unité mixte de recherche sous la double tutelle de l’Institut National des Sciences Mathématiques et de leurs Interactions du CNRS et de l’Université de Strasbourg.

L'Institut est adossé à l'UFR de Mathématiques et Informatique de l'Université de Strasbourg.

Photo de la tour IRMA

L'IRMA

Riche d’une histoire de plus de 100 ans, l'IRMA est aujourd'hui une unité mixte de recherche sous la double tutelle de l’Institut National des Sciences Mathématiques et de leurs Interactions du CNRS et de l’Université de Strasbourg.

L'Institut est adossé à l'UFR de Mathématiques et Informatique de l'Université de Strasbourg.

À la une !

Years After the Early Death of a Math Genius, Her Ideas Gain New Life

Years After the Early Death of a Math Genius, Her Ideas Gain New Life

Le magazine Quanta publie un article sur les travaux de Laura Monk et Nalini Anantharaman, prolongement des travaux de Maryam Mirzakhani.


©Thomal Lin
Years After the Early Death of a Math Genius, Her Ideas Gain New Life

Years After the Early Death of a Math Genius, Her Ideas Gain New Life

Le magazine Quanta publie un article sur les travaux de Laura Monk et Nalini Anantharaman, prolongement des travaux de Maryam Mirzakhani.


©Thomal Lin

Agenda

  • Du 10 au 13 juin 2025 conférence

      Current Trends in Calabi-Yau Moduli
    • Lieu : IRMA
  • Vendredi 13 juin 2025 - 11h00 Séminaire Statistique

      Roberto Molinari : Fiducial Matching: Differentially Private Inference for Categorical Data
    • Lieu : Salle de séminaires IRMA
    • Résumé : The task of statistical inference, which includes building confidence intervals and tests for parameters and effects of interest to a researcher, is still an open area of investigation in a differentially private (DP) setting. Indeed, in addition to the randomness due to data sampling, DP delivers another source of randomness consisting in the noise added to protect an individual’s data from being disclosed to a potential attacker. As a result of this convolution of noises, in many cases it is too complicated to determine the stochastic behavior of the statistics and parameters resulting from a DP procedure. In this work we contribute to this line of investigation by employing a simulation-based matching approach, solved through tools from the fiducial framework, which aims to replicate the data generation pipeline (including the DP step) and retrieve an approximate distribution of the estimates resulting from this pipeline. For this purpose we focus on the analysis of categorical (nominal) data that is common in national surveys, for which sensitivity is naturally defined, and on additive privacy mechanisms. We prove the validity of the proposed approach in terms of coverage and highlight its good computational and statistical performance for different inferential tasks in simulated and applied data settings.

  • Du 16 au 20 juin 2025 conférence

      New Trends in the Mathematical and Physical Aspects of Magnetism
    • Lieu : Salle de conférences IRMA
  • Lundi 16 juin 2025 - 14h00 Séminaire Géométrie et applications

      Michael Rothgang : Equivariant transversality for holomorphic curves
    • Lieu : Salle de séminaires IRMA
    • Résumé : Consider closed holomorphic curves in symplectic $G$-manifolds, with respect to a $G$-invariant almost complex structure. We should not expect the moduli space of such curves to be a manifold (after all, transversality and symmetry are famously incompatible). However, we can hope for a clean intersection condition: the moduli space decomposes into countably many disjoint strata which are smooth manifolds, whose dimensions are explicitly computable.

      I present this decomposition for simple curves, and indicate how to extend this to multiple covers. These are the first steps towards a well-behaved theory of equivariant holomorphic curves. This has applications to the 3-body problem and real Gromov-Witten theory.

  • Lundi 16 juin 2025 - 15h30 Séminaire Géométrie et applications

      Karin Melnick : À venir
    • Lieu : Salle de séminaires IRMA
  • Mardi 17 juin 2025 - 14h00 Séminaire ART

      Aleksander Vainshtein : Poisson-Lie groups and cluster structures
    • Lieu : Salle de séminaires IRMA
    • Résumé : It is well known that cluster structures and Poisson structures in the algebra of regular functions on a quasi-affine variety are closely related. In this talk, I will discuss this connection for Poisson structures on a simple simply connected complex Lie group G defined by a pair of classical R-matrices. The key element of the construction is a rational Poisson map from the group with a bracket defined by a pair of suitably chosen standard R-matrices to the same group with an arbitrary pair of R-matrices. In the case of G=SL_n one can build explicitly the corresponding cluster structure and prove its regularity and completeness.

Actualités

Toutes les actualités