Séminaire Géométrie et applications
organisé par l'équipe Géométrie
-
William Sarem
Entropy, holomorphic convexity, and locally symmetric spaces
2 février 2026 - 14:00Salle de séminaires IRMA
Let $X = G/K$ be a Hermitian symmetric space of noncompact type (in rank one, $X$ is the unit ball in $\mathbb{C}^n$ and $G$ is the group $\mathrm{PU}(n,1)$), and let $\Gamma$ be a discrete and torsion-free subgroup of $G$. Can we find criteria on $\Gamma$ implying that the quotient of $X$ by $\Gamma$ is holomorphically convex, or that it contains no compact analytic subvariety of positive dimension? I will present criteria inspired by the work of Dey and Kapovich, which concern the critical exponent of the group (in rank one) or its entropy associated with some linear form (in higher rank). In both cases, the proofs involve Patterson–Sullivan measures, and the ultimate goal is to show that these quotients are Stein manifolds. The results in higher rank come from work in progress, in collaboration with Colin Davalo. -
Jonathan Clivio
TBA
16 février 2026 - 14:00Salle de séminaires IRMA
TBA -
Timothé Lemistre
TBA
23 février 2026 - 14:00Salle de séminaires IRMA
TBA -
Manuel Rivera
TBA
9 mars 2026 - 14:00Salle de séminaires IRMA
-
Timothée Bénard
TBA
16 mars 2026 - 14:00Salle de séminaires IRMA
TBA