S'abonner à l'agenda
  • Livia Grammatica

    Tate-linear formal varieties

    15 janvier 2026 - 14:00Salle de séminaires IRMA

    We work over a closed field of positive characteristic. A classic result of Serre-Tate says that the deformation space of an ordinary abelian variety has the structure of a formal torus, and one can consider the closed subvarieties which are given by formal subtori. Tate-linear formal varieties play the role of formal subtori in the deformation space of abelian varieties of arbitrary Newton polygon. Recent work of Chai-Oort established an important link between Tate-linear subvarieties and the Hecke orbit conjecture for \mathcal{A}_g, which then led to a full solution for Shimura varieties of Hodge type by D'Addezio and van Hoften. We will explain the role of Tate-linear varieties in the Hecke orbit conjecture, their conjectural link with special subvarieties of \mathcal{A}_g, and show how p-adic monodromy techniques can help shed light on their structure.
  • Lin Zhou

    On the infinite generation of morphic and motivic cohomology

    22 janvier 2026 - 14:00Salle de séminaires IRMA

    Since Mumford’s work in the 1960s, questions on the finite generation of Chow and Griffiths groups—such as the finiteness of dimension, the size of their torsion, or their divisibility—have been a central theme in the study of algebraic cycles. Motivic cohomology and morphic cohomology naturally generalize the Chow group (cycles modulo rational equivalence) and cycles modulo algebraic equivalence. In this talk, I will show how, over an algebraically closed field whose transcendence degree over its prime field is infinite (e.g., the complex number field), one can combine Schoen’s injectivity argument with Schreieder’s refined unramified cohomology to construct examples of motivic and morphic cohomology groups with infinitely many torsion elements. These appear to be the first known examples exhibiting infinite torsion in motivic or morphic cohomology. Joint work with Theodosis Alexandrou.
  • Yuanyang Jiang

    Locally analytic completed cohomology of Hilbert modular varieties

    29 janvier 2026 - 14:00Salle de séminaires IRMA

    The property of a Galois representation being de Rham is designed to capture the property of being of geometric origin. As an example, we have the following conjecture about classicality: a de Rham Galois representation that arises from a p-adic Hilbert modular form (i.e. inside the "completed cohomology" of Hilbert modular varieties) should actually arise from a classical Hilbert modular form. Following an idea of Lue Pan of realizing the Fontaine operator geometrically, we find a cohomological description of the property of being de Rham. We relate the relevant cohomology to classical Hilbert modular forms via a new type of locally analytic Jacquet-Langlands correspondence. As a corollary, we can deduce some cases of the Langlands-Clozel-Fontaine-Mazur conjecture.
  • Jean Douçot

    Transformée de Fourier des données de Stokes de connexions irrégulières

    5 février 2026 - 14:00Salle de séminaires IRMA

    Par la correspondance de Riemann-Hilbert, les connexions à singularités régulières sur les courbes sont caractérisées par leur monodromie. Cette description topologique des connexions admet une vaste généralisation au cas des singularités irrégulières, faisant intervenir des données de monodromie généralisées appelées données de Stokes. Par ailleurs, il existe une notion de transformée de Fourier pour les connexions irrégulières sur la droite projective complexe : celle-ci agit de manière non-triviale, modifiant le rang, le nombre de singularités, et l'ordre des pôles des connexions. Cela soulève la question de décrire directement l'action de la transformée de Fourier au niveau des données de Stokes. Dans cet exposé, je vais présenter un travail en commun avec Andreas Hohl, qui donne une méthode topologique pour déterminer explicitement les données de Stokes de la transformée de Fourier dans une nouvelle classe de cas, reposant sur des travaux de T. Mochizuki. En particulier, cela fournit des isomorphismes explicites entre les variétés de caractères sauvages correspondantes, qui conjecturalement sont compatibles avec leur structure symplectique.